题目内容
5.△ABC的内角A、B、C对的边分别为a、b、c,$\overrightarrow{m}$=(sinB,5sinA+5sinc)与$\overrightarrow{n}$=(5sinB-6sinC,sinC-sinA)垂直.(1)求sinA的值;(2)若a=2$\sqrt{2}$,求△ABC的面积S的最大值.
分析 (1)利用向量垂直得出恒等式,使用正弦定理将角化边得出a,b,c的关系,利用余弦定理求出A;
(2)使用余弦定理和基本不等式得出bc的最大值,从而得出三角形面积的最大值.
解答 解:(1)∵$\overrightarrow{m}⊥\overrightarrow{n}$,∴$\overrightarrow{m}•\overrightarrow{n}=0$,
∴sinB(5sinB-6sinC)+(5sinA+5sinC)(sinC-sinA)=0,
∴5b2-6bc+5(c2-a2)=0,即b2+c2-a2=$\frac{6bc}{5}$.
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{3}{5}$.
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$.
(2)在△ABC中,∵b2+c2-a2=$\frac{6bc}{5}$,∴b2+c2=$\frac{6bc}{5}+8$≥2bc,∴bc≤10.
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{2}{5}$bc≤4.
∴△ABC的面积S的最大值是4.
点评 本题考查了平面向量的数量积运算,正余弦定理,基本不等式,解三角形,属于中档题.
练习册系列答案
相关题目
15.设函数f(x)=|$\frac{2}{x}$-ax-b|(a,b∈R),若对任意的正实数a和实数b,总存在x0∈[1,2],使得f(x0)≥m,则实数m的取值范围是( )
| A. | (-∞,0] | B. | (-∞,$\frac{1}{2}$] | C. | (-∞,1] | D. | (-∞,2] |
10.复数$\frac{2-i}{1+{i}^{5}}$在复平面内所对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |