题目内容
15.若曲线f(x)=ax2+lnx存在平行于x轴的切线,则实数a的取值范围是(-∞,0).分析 求函数的导数,根据导数的几何意义进行求解即可.
解答 解:若f(x)=ax2+lnx存在平行于x轴的切线,
则等价为f′(x)=0有解,
即f′(x)=2ax+$\frac{1}{x}$=0,则(0,+∞)上有解,
即2a=-$\frac{1}{{x}^{2}}$,
∵x>0,∴-$\frac{1}{{x}^{2}}$<0,
则2a<0,则a<0,
故答案为:(-∞,0),
点评 本题主要考查函数的导数的几何意义的应用,根据条件转化为f′(x)=0有解是解决本题的关键.
练习册系列答案
相关题目
5.与圆x2+y2+8x+15=0及圆x2+y2-8x+12=0都外切的圆的圆心在( )
| A. | 一个椭圆上 | B. | 一条抛物线上 | C. | 双曲线的一支上 | D. | 一个圆上 |
3.如图,将四边形ABCD中△ADC沿着AC翻折到ADlC,则翻折过程中线段DB中点M的轨迹是( )

| A. | 椭圆的一段 | B. | 抛物线的一段 | C. | 一段圆弧 | D. | 双曲线的一段 |
20.曲线y=-$\frac{1}{2}$x+lnx的切线是直线y=$\frac{1}{2}$x+b,则b的值为( )
| A. | -2 | B. | -1 | C. | -$\frac{1}{2}$ | D. | 1 |
7.期中考试后,我校对甲、乙两个文科班的数学考试成绩进行分析.规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的2×2列联表:
(1)求出表格中x,y的值;
(2)根据列联表的数据,判断是否有99%的把握认为“成绩与班级有关系”,并说明理由.
参考公式与临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 优秀人数 | 非优秀人数 | 合计 | |
| 甲班 | 10 | x | 50 |
| 乙班 | y | 30 | 50 |
| 合计 | 30 | 70 | 100 |
(2)根据列联表的数据,判断是否有99%的把握认为“成绩与班级有关系”,并说明理由.
参考公式与临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |