题目内容
18.某中学共8个艺术社团,现从中选10名同学组成新春社团慰问小组,其中书法社团需选出3名同学,其他各社团各选出1名同学,现从这10名同学中随机选取3名同学,到社区养老院参加“新春送欢乐”活动(每位同学被选到的可能性相同),则选出的3名同学来自不同社团的概率为( )| A. | $\frac{7}{10}$ | B. | $\frac{7}{24}$ | C. | $\frac{49}{60}$ | D. | $\frac{1}{10}$ |
分析 利用互斥事件加法公式、相互独立事件概率乘法公式求解.
解答 解:设“选出的3名同学是来自互不相同社团”为事件A,
则P(A)=$\frac{{C}_{3}^{1}{C}_{7}^{2}+{C}_{3}^{0}{C}_{7}^{3}}{{C}_{10}^{3}}$=$\frac{49}{60}$.
故选:C.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意互斥事件加法公式、相互独立事件概率乘法公式的合理运用.
练习册系列答案
相关题目
8.已知函数f(x)=|log4x|,正实数m、n满足m<n,且f(m)=f(n),若f(x)在区间[m5,n]上的最大值为5,则m、n的值分别为( )
| A. | $\frac{1}{2}$、2 | B. | $\frac{1}{4}$、4 | C. | $\frac{1}{4}$、2 | D. | $\frac{1}{2}$、4 |
9.函数y=$\sqrt{sin(\frac{π}{3}-2x)}$的单调增区间是( )
| A. | [k$π-\frac{π}{12}$,k$π+\frac{π}{6}$],k∈Z | B. | [k$π-\frac{π}{3}$,k$π-\frac{π}{12}$],k∈Z | ||
| C. | [k$π-\frac{π}{12}$,k$π+\frac{5π}{12}$],k∈Z | D. | [k$π+\frac{5π}{12}$,k$π+\frac{11π}{12}$],k∈Z |
6.设集合A={x|x2-3x<0},B={x||x|<2},则A∩B=( )
| A. | {x|2<x<3} | B. | {x|-2<x<0} | C. | {x|0<x<2} | D. | {x|-2<x<3} |
13.若实数a,b∈R且a>b,则下列不等式恒成立的是( )
| A. | a2>b2 | B. | $\frac{a}{b}>1$ | C. | 2a>2b | D. | lg(a-b)>0 |
3.已知函数f(x)=sin(2ωx一$\frac{π}{4}$)(ω>0)的最小正周期为π,则函数f(x)的图象( )
| A. | 关于点($\frac{π}{8}$,0)对称 | B. | 关于直线x=$\frac{π}{8}$对称 | ||
| C. | 关于点(-$\frac{π}{4}$,0)对称 | D. | 关于直线x=-$\frac{π}{4}$对称 |