题目内容

18.某中学共8个艺术社团,现从中选10名同学组成新春社团慰问小组,其中书法社团需选出3名同学,其他各社团各选出1名同学,现从这10名同学中随机选取3名同学,到社区养老院参加“新春送欢乐”活动(每位同学被选到的可能性相同),则选出的3名同学来自不同社团的概率为(  )
A.$\frac{7}{10}$B.$\frac{7}{24}$C.$\frac{49}{60}$D.$\frac{1}{10}$

分析 利用互斥事件加法公式、相互独立事件概率乘法公式求解.

解答 解:设“选出的3名同学是来自互不相同社团”为事件A,
则P(A)=$\frac{{C}_{3}^{1}{C}_{7}^{2}+{C}_{3}^{0}{C}_{7}^{3}}{{C}_{10}^{3}}$=$\frac{49}{60}$.
故选:C.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意互斥事件加法公式、相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网