题目内容

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点是F1(-2,0),且b2=3a2
(1)求双曲线C的方程;
(2)设经过双曲线右焦点的直线l的斜率为-m,当直线l与双曲线C的右支相交于不同的两点A、B时,求实数m的取值范围,并证明AB的中点M在曲线(x-1)2-
y2
3
=1上.
考点:直线与圆锥曲线的关系,双曲线的简单性质
专题:计算题,证明题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)根据半焦距c和a与b的关系联立方程求得a和b,则双曲线方程可得;
(2)把直线l与双曲线方程联立消去y,根据判别式大于0,判断出直线与双曲线定有交点,进而根据韦达定理求得交点横坐标的和与积得表达式,根据双曲线的性质求得m的范围.设A,B的坐标,则可知其中点的坐标,代入曲线3(x-1)2-y2=3等式成立,可判断出AB的中点在此曲线上.
解答: (1)解:由题意得,c=2,c2=a2+b2
∴4=a2+3a2∴a2=1,b2=3,
∴双曲线方程为x2-
y2
3
=1;
(2)证明:由右焦点为(2,0),则直线l:m(x-2)+y=0,
y=-mx+2m
3x2-y2=3
得(3-m2)x2+4m2x-4m2-3=0,
由△>0得4m4+(3-m2)(4m2+3)>0,即12m2+9-3m2>0,即m2+1>0恒成立,
x1+x2=
4m2
m2-3
>0
x1x2=
4m2+3
m2-3
>0
∴m2>3∴m∈(-∞,-
3
)∪(
3
,+∞),
设A(x1,y1),B(x2,y2),则
x1+x2
2
=
2m2
m2-3
y1+y2
2
=-
2m3
m2-3
+2m=
-6m
m2-3

∴AB中点M(
2m2
m2-3
,-
6m
m2-3

∵3(
2m2
m2-3
-1)2-
36m2
(m2-3)2
=3×
(m2+3)2
(m2-3)2
-
36m2
(m2-3)2
=3•
m4+6m2+9-12m2
(m2-3)2
=3
∴AB的中点M在曲线(x-1)2-
y2
3
=1上.
点评:本题考查双曲线的方程和性质,考查联立直线方程和双曲线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网