ÌâÄ¿ÄÚÈÝ
1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=asin¦È£¨a¡Ù0£©£®£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±êϵ·½³ÌÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl½ØÔ²CµÄÏÒ³¤µÈÓÚÔ²CµÄ°ë¾¶³¤µÄ$\sqrt{3}$±¶£¬ÇóaµÄÖµ£®
·ÖÎö £¨¢ñ£©½«t²ÎÊýÏûÈ¥¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬¸ù¾Ý¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2´øÈëÔ²C¿ÉµÃÖ±½Ç×ø±êϵ·½³Ì£»
£¨¢ò£©ÀûÓÃÏÒ³¤¹«Ê½Ö±½Ó½¨Á¢¹ØÏµÇó½â¼´¿É£®
½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt£¬¿ÉµÃ£º4x+3y-8=0£»
ÓÉÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=asin¦È£¨a¡Ù0£©£¬¿ÉµÃ¦Ñ2=¦Ñasin¦È£¬¸ù¾Ý¦Ñsin¦È=y£¬¦Ñ2=x2+y2
¿ÉµÃÔ²CµÄÖ±½Ç×ø±êϵ·½³ÌΪ£ºx2+y2-ay=0£¬¼´${x}^{2}+£¨y-\frac{a}{2}£©^{2}=\frac{{a}^{2}}{4}$£®
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖªÔ²CµÄÔ²ÐÄΪ£¨0£¬$\frac{a}{2}$£©°ë¾¶r=$\frac{a}{2}$£¬
Ö±Ïß·½³ÌΪ4x+3y-8=0£»
ÄÇô£ºÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|\frac{3a}{2}-8|}{5}$
Ö±Ïßl½ØÔ²CµÄÏÒ³¤Îª$\sqrt{3}a$=2$\sqrt{{r}^{2}-{d}^{2}}$
½âµÃ£ºa=32»òa=$\frac{32}{11}$
¹ÊµÃÖ±Ïßl½ØÔ²CµÄÏÒ³¤µÈÓÚÔ²CµÄ°ë¾¶³¤µÄ$\sqrt{3}$±¶Ê±aµÄֵΪ32»ò$\frac{32}{11}$£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì¡¢ÆÕͨ·½³ÌµÄ»¥»¯£¬ÒÔ¼°Ó¦Óã¬ÊôÓÚÖеµÌ⣮
| A£® | £¨-¡Þ£¬-2016£© | B£® | £¨-2018£¬-2016£© | C£® | £¨-2018£¬0£© | D£® | £¨-¡Þ£¬-2018£© |
| A£® | f£¨2014£©-f£¨2017£©£¼0 | B£® | f£¨2014£©-f£¨2017£©=0 | C£® | f£¨2014£©+f£¨2017£©£¼0 | D£® | f£¨2014£©+f£¨2017£©=0 |
| A£® | £¨$\frac{3}{2}$£¬$\frac{3\sqrt{2}}{2}$£© | B£® | £¨$\frac{3\sqrt{2}}{2}$£¬$\frac{3}{2}$£© | C£® | £¨$\frac{3}{2}$£¬$\frac{3\sqrt{3}}{2}$£© | D£® | £¨$\frac{3\sqrt{3}}{2}$£¬$\frac{3}{2}$£© |
| A£® | $£¨-¡Þ£¬-\frac{{{e^2}+1}}{e}£©$ | B£® | $£¨\frac{{{e^2}+1}}{e}£¬+¡Þ£©$ | C£® | $£¨-\frac{{{e^2}+1}}{e}£¬-2£©$ | D£® | $£¨2£¬\frac{{{e^2}+1}}{e}£©$ |
| A£® | {-2£¬1} | B£® | {-2£¬0£¬2} | C£® | {0£¬2} | D£® | {0£¬1} |
| A£® | ∅ | B£® | {x|-1£¼x£¼2} | C£® | {x|0£¼x£¼2} | D£® | {x|1£¼x£¼2} |