题目内容

(2006•苏州模拟)双曲线
x2
16
-
y2
9
=1
的焦点是F1,F2,点P是双曲线上一点,若
PF1
PF2
=0,则△PF1F2的面积是(  )
分析:求出两个焦点F1、F2 的坐标,Rt△PF1F2中,由勾股定理及双曲线的定义得|PF1|•|PF2 |=18,从而求得△PF1F2面积
1
2
•|PF1|•|PF2 |的值.
解答:解:由题意得  a=4,b=3,c=5,∴F1  (-5,0 )、F2(5,0),
Rt△PF1F2中,由勾股定理得4c2=|PF1|2+|PF2|2=(|PF1 |-|PF2|)2+2•|PF1|•|PF2 |=4a2+2•|PF1|•|PF2 |,
∴100=4×16+2•|PF1|•|PF2 |,∴|PF1|•|PF2 |=18,
∴△PF1F2面积为
1
2
•|PF1|•|PF2 |=9,
故选A.
点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,求出|PF1|•|PF2 |的值是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网