题目内容
已知{an}是等差数列,{bn}是等差数列,且b2=3,b3=9,a1=b1,a14=b4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn= an+ bn,求数列{cn}的前n项和.
如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为;
②求p的取值范围.
阅读右边的程序框图,运行相应的程序,则输出S的值为( )
(A)2 (B)4 (C)6 (D)8
已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为( )
(A) (B) (C) (D)
设函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)设,若函数有三个不同零点,求c的取值范围;
(Ⅲ)求证:是有三个不同零点的必要而不充分条件.
函数的最大值为_________.
执行如图所示的程序框图,输出的s值为
(A)8
(B)9
(C)27
(D)36
在封闭的直三棱柱内有一个体积为V的球,若,,,,则V的最大值是
(A)4π (B) (C)6π (D)
为等差数列的前n项和,且记,其中表示不超过的最大整数,如.
(Ⅰ)求;
(Ⅱ)求数列的前1 000项和.