题目内容

11.设等差数列{an}的前n项和Sn满足S5=15,且2a2,a6,a8+1成公比大于1的等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^n}•{a_n}$,求数列{bn}的前n项和Tn

分析 (1)利用等差数列的首项与公差通过数列的和求出a3,利用2a2,a6,a8+1成公比大于1的等比数列.求出公差,然后求解数列的通项公式.
(2)化简数列的通项公式,利用错位相减法求解数列的和即可.

解答 解:(1)设等差数列{an}的首项为a1,公差为d,S5=15,所以a3=3,2a2,a6,a8+1成公比大于1的等比数列.所以a62=2a2(a8+1),即:(a3+3d)2=2(a3+d)(a3+5d+1),所以d=1或d=$-\frac{15}{19}$(舍去),
所以a1=a3-2d=3-2=1.
所以an=n,
数列{an}的通项公式为:an=n;
(2)由(1)可知:设${b_n}={2^n}•{a_n}$=n•2n
Tn=1×2+2×22+3×23+…+n•2n…①;
①×2可得:2Tn=1×22+2×23+3×24+…+(n-1)2n+n•2n+1…②,
①-②得:-Tn=2+22+23+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=2n+1-2-n•2n+1
∴Tn=(n-1)2n+1+2.

点评 本题考查数列求和,数列通项公式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网