题目内容

7.过抛物线y=4x2的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,则线段AB的长为$\frac{41}{8}$.

分析 先根据抛物线方程求出焦点坐标,进而可设出直线方程,然后联立直线与抛物线消去y得到关于x的一元二次方程,根据韦达定理得到两根之和与两根之积,再由两点间的距离公式表示出|AB|,将得到的两根之和与两根之积即可得到答案.

解答 解:抛物线y=4x2即x2=$\frac{y}{4}$焦点为(0,$\frac{1}{16}$),
设过焦点(0,$\frac{1}{16}$)的直线为y=kx+$\frac{1}{16}$,
则令kx+$\frac{1}{16}$=4x2
即64x2-16kx-1=0,
由韦达定理得x1+x2=$\frac{k}{4}$,x1x2=-$\frac{1}{64}$,
y1=kx1+$\frac{1}{16}$,y2=kx2+$\frac{1}{16}$,
所以y1+y2=k(x1+x2)+$\frac{1}{8}$=$\frac{1}{4}$k2+$\frac{1}{8}$=5,
所以k2=$\frac{39}{2}$,
所以|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|
=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{{k}^{2}}{16}+\frac{1}{16}}$=$\frac{1}{4}$×(1+$\frac{39}{2}$)=$\frac{41}{8}$.
故答案为:$\frac{41}{8}$.

点评 本题主要考查抛物线的基本性质和两点间的距离公式的应用,联立直线方程和抛物线的方程,运用韦达定理是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网