题目内容
19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+5},x≤0}\\{f(x-5),x>0}\end{array}\right.$,则f(2016)=( )| A. | $\frac{1}{2}$ | B. | 2 | C. | 16 | D. | 32 |
分析 利用分段函数的性质求解.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x+5},x≤0}\\{f(x-5),x>0}\end{array}\right.$,
∴f(2016)=f(2016-2015)=f(1)=f(-4)=2-4+5=2.
故选:B.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.
练习册系列答案
相关题目
9.如图,在平面四边形ABCD中,AB=1,$BC=\sqrt{3}+1$,$AD=\sqrt{6}$,∠ABC=120°,∠DAB=75°,则CD=( )

| A. | $\sqrt{3}$ | B. | $2\sqrt{2}$ | C. | $2\sqrt{3}$ | D. | $\sqrt{2}+1$ |
10.已知直线l:kx+y-2=0(k∈R)是圆C:x2+y2-6x+2y+9=0的对称轴,过点A(0,k)作圆C的一条切线,切点为B,则线段AB的长为( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 3 | D. | 2$\sqrt{3}$ |
4.下列四条直线,倾斜角最大的是( )
| A. | y=-x+1 | B. | y=x+1 | C. | y=2x+1 | D. | x=1 |
8.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≤1}\\{{-x}^{2}+4x-\frac{5}{2},x>1}\end{array}\right.$ 函数g(x)=$\frac{3}{2}$x-a,其中a∈R,若函数y=f(x)-g(x)恰有3个零点,则a的取值范围是( )
| A. | (0,$\frac{15}{16}$) | B. | ($\frac{15}{16}$,1) | C. | (1,$\frac{16}{15}$) | D. | (1,$\frac{5}{4}$) |