题目内容
14.已知函数f(x)=ax(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)$\sqrt{x}$是单调增函数,则a=$\frac{1}{8}$.分析 根据题意求出m的取值范围,再讨论a的值,求出f(x)的单调性,从而求出a的值.
解答 解:根据题意,得3-10m>0,
解得m<$\frac{3}{10}$;
当a>1时,函数f(x)=ax在区间[-1,2]上单调递增,最大值为a2=8,解得a=2$\sqrt{2}$,
最小值为m=a-1=$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$>$\frac{3}{10}$,不合题意,舍去;
当1>a>0时,函数f(x)=ax在区间[-1,2]上单调递减,最大值为a-1=8,解得a=$\frac{1}{8}$,
最小值为m=a2=$\frac{1}{64}$<$\frac{3}{10}$,满足题意;
综上,a=$\frac{1}{8}$.
故答案为:$\frac{1}{8}$.
点评 本题主要考查指数函数的图象与性质的应用问题,通过讨论对数函数的底数确定函数的单调性是解决本题的关键.
练习册系列答案
相关题目
5.某单位共有10名员工,他们某年的收入如表:
(1)求该单位员工当年年薪的平均值和中位数;
(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望;
(3)已知员工年薪收入与工作年限成正线性相关关系,若某员工工作第一年至第四年的年薪分别为3万元、4.2万元、5.6万元、7.2万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\hat y=\hat bx+\hat a$中系数计算公式:$\hat b=\frac{{\sum_{i=1}^n{(\;{x_i}-\overline x\;)(\;{y_i}-\overline y\;)}}}{{{{(\;{x_i}-\overline x\;)}^2}}}$,$\hat a=\overline y-\hat b\;\overline x$,其中$\overline x$、$\overline y$表示样本均值.
| 员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 年薪(万元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望;
(3)已知员工年薪收入与工作年限成正线性相关关系,若某员工工作第一年至第四年的年薪分别为3万元、4.2万元、5.6万元、7.2万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\hat y=\hat bx+\hat a$中系数计算公式:$\hat b=\frac{{\sum_{i=1}^n{(\;{x_i}-\overline x\;)(\;{y_i}-\overline y\;)}}}{{{{(\;{x_i}-\overline x\;)}^2}}}$,$\hat a=\overline y-\hat b\;\overline x$,其中$\overline x$、$\overline y$表示样本均值.
19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+5},x≤0}\\{f(x-5),x>0}\end{array}\right.$,则f(2016)=( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | 16 | D. | 32 |
6.在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是( )
| A. | 若m∥α且α∥β,则m∥β | |
| B. | 若α⊥β,m?α,n?β,则m⊥n | |
| C. | 若m⊥α且α∥β,则m⊥β | |
| D. | 若m不垂直于α,且n?α,则m必不垂直于n |
3.
噪声污染已经成为影响人们身体健康和生活质m的严重问题,为了了解强度D(单位:分贝)与声音能量I(单位:W/cm2)之间的关系,将测量得到的声音强度Di和声音能量Ii(i=1.2.…,10)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}$$\sum_{i=1}^{10}$Wi
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知点P的声音能量等于声音能量Il与I2之和.请根据(I)中的回归方程,判断P点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据(μl,ν1),(μ2,ν2),…(μn,νn),其回归直线ν=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.
| $\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\sum_{i=1}^{10}$(Ii-$\overline{I}$)2 | $\sum_{i=1}^{10}$(Wi-$\overline{W}$)2 | $\sum_{i=1}^{10}$(Ii-$\overline{I}$)(Di-$\overline{D}$) | $\sum_{i=1}^{10}$(Wi-$\overline{W}$)(Di-$\overline{D}$) |
| 1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知点P的声音能量等于声音能量Il与I2之和.请根据(I)中的回归方程,判断P点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据(μl,ν1),(μ2,ν2),…(μn,νn),其回归直线ν=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.