题目内容

5.若x=8,y=18,则$\frac{x+y}{\sqrt{x}-\sqrt{y}}$-$\frac{2xy}{x\sqrt{y}-y\sqrt{x}}$的值为$-\sqrt{2}$.

分析 把要求值的式子化简变形,代入x,y的值得答案.

解答 解:$\frac{x+y}{\sqrt{x}-\sqrt{y}}$-$\frac{2xy}{x\sqrt{y}-y\sqrt{x}}$=$\frac{x+y}{\sqrt{x}-\sqrt{y}}-\frac{2xy}{\sqrt{xy}(\sqrt{x}-\sqrt{y})}$
=$\frac{x+y-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}=\frac{(\sqrt{x}-\sqrt{y})^{2}}{\sqrt{x}-\sqrt{y}}=\sqrt{x}-\sqrt{y}$=$\sqrt{8}-\sqrt{18}=2\sqrt{2}-3\sqrt{2}=-\sqrt{2}$.
故答案为:$-\sqrt{2}$.

点评 本题考查根式与分数指数幂的互化,能正确的将所求的式子化简是解答此题的关键,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网