题目内容

4.在正方形ABCD中,AB=AD=2,M,N分别为边BC,CD上的两个动点且MN=$\sqrt{2}$,则$\overline{AM}$•$\overline{AN}$的取值范围为(  )
A.[4,8-2$\sqrt{2}$]B.[4-2$\sqrt{2}$,8]C.[4,8+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,8-2$\sqrt{2}$]

分析 如图所示,设M(2,y),N(x,2),$(2-\sqrt{2}≤x≤2,2-\sqrt{2}≤y≤2)$.由于MN=$\sqrt{2}$,可得(x-2)2+(y-2)2=2.则$\overline{AM}$•$\overline{AN}$=2x+2y=t,数形结合即可得出.

解答 解:如图所示,
设M(2,y),N(x,2),$(2-\sqrt{2}≤x≤2,2-\sqrt{2}≤y≤2)$.
∵MN=$\sqrt{2}$,
∴$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\sqrt{2}$,化为(x-2)2+(y-2)2=2.
则$\overline{AM}$•$\overline{AN}$=2x+2y=t,
由$\frac{|4+4-t|}{\sqrt{8}}$=$\sqrt{2}$,解得t=4或12(舍去).
把x=2$-\sqrt{2}$,y=2代入可得t=8-2$\sqrt{2}$.
综上可得:t∈$[4,8-2\sqrt{2}]$.
故选:A.

点评 本题考查了数量积运算性质、两点之间的距离公式、直线与圆相切相交性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网