题目内容

8.设三棱柱ABC-A1B1C1体积为V,E,F,G分别是AA1,AB,AC的中点,则三棱锥E-AFG体积是(  )
A.$\frac{1}{6}V$B.$\frac{1}{12}V$C.$\frac{1}{16}V$D.$\frac{1}{24}V$

分析 由E,F,G分别是AA1,AB,AC的中点,知S△AFG=$\frac{1}{4}{S}_{△ABC}$,$AE=\frac{1}{2}A{A}_{1}$,由此能求出三棱锥E-AFG体积.

解答 解:∵三棱柱ABC-A1B1C1体积为V,
∴V=S△ABC•AA1
∵E,F,G分别是AA1,AB,AC的中点,
∴S△AFG=$\frac{1}{4}{S}_{△ABC}$,$AE=\frac{1}{2}A{A}_{1}$,
∴三棱锥E-AFG体积:
VE-AFG=$\frac{1}{3}×{S}_{△AFG}×AE$=$\frac{1}{3}×(\frac{1}{4}{S}_{△ABC})×(\frac{1}{2}A{A}_{1})$=$\frac{1}{24}$S△ABC•AA1=$\frac{1}{24}V$.
故选:D.

点评 本题考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网