题目内容
1.已知△ABC中,b=2,B=45°,C=105°,则a=( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$+1 | C. | $\sqrt{3}$-1 | D. | $\sqrt{3}$ |
分析 由已知及正弦定理可求a的值.
解答 解:∵△ABC中,b=2,B=45°,C=105°,可得:A=180°-B-C=30°,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可得:a=$\frac{b•sinA}{sinB}$=$\frac{2×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$.
故选:A.
点评 本题主要考查了正弦定理在解三角形中的应用,属于基础题.
练习册系列答案
相关题目
11.已知命题p:?x0∈R,x02+(a-1)x0+1<0,命题q:?x∈R,x2+ax+1≥0,p∨(¬q)为假命题,则实数a的取值范围是( )
| A. | [-2,-1] | B. | (-1,3) | C. | (-2,-1) | D. | [-1,2] |
9.把函数y=sin x(x∈R)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再把所得图象上所有点向左平移$\frac{π}{3}$个单位长度,得到图象的函数解析式为( )
| A. | y=sin(2x-$\frac{π}{3}$) | B. | y=sin(2x+$\frac{π}{3}$) | C. | y=sin($\frac{1}{2}$x+$\frac{π}{6}$) | D. | y=sin($\frac{1}{2}$x+$\frac{π}{3}$) |