题目内容
4.已知△ABC为正三角形且边长为2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$等于2.分析 根据条件可知,$|\overrightarrow{AB}|=|\overrightarrow{AC}|=2$,$<\overrightarrow{AB},\overrightarrow{AC}>=60°$,这样进行数量积的计算即可求出$\overrightarrow{AB}•\overrightarrow{AC}$的值.
解答 解:如图,
$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}||\overrightarrow{AC}|cos60°$=$2×2×\frac{1}{2}=2$.
故答案为:2.
点评 考查向量夹角的概念,向量数量积的计算公式.
练习册系列答案
相关题目
5.某市从参加广场活动的人员中随机抽取了1000名,得到如下表:
市民参加广场活动项目与性别列联表
(Ⅰ)能否有99.5%把握认为市民参加广场活动的项目与性别有关?
(Ⅱ)以性别为标准,用分层抽样的方法在跳广场舞的人员中抽取4人,再在这4人中随机确定两名做广场舞管理,求这两名管理是一男一女的概率.
附 参考公式和K2检验临界值表:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d,
市民参加广场活动项目与性别列联表
| 广场舞 | 球、棋、牌 | 总计 | |
| 男 | 100 | 200 | 300 |
| 女 | 300 | 400 | 700 |
| 总计 | 400 | 600 | 1000 |
(Ⅱ)以性别为标准,用分层抽样的方法在跳广场舞的人员中抽取4人,再在这4人中随机确定两名做广场舞管理,求这两名管理是一男一女的概率.
附 参考公式和K2检验临界值表:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d,
| P(K2≥k | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
12.已知定义在区间[-3,3]上的函数f(x)=2x+m满足f(2)=6,在[-3,3]上随机取一个实数x,则使得f(x)的值不小于4的概率为( )
| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
19.已知递增的等比数列{an}的公比为q,其前n项和Sn<0,则( )
| A. | a1<0,0<q<1 | B. | a1<0,q>1 | C. | a1>0,0<q<1 | D. | a1>0,q>1 |
9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线与圆${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,则该双曲线的离心率为( )
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 3 |
13.函数$y=sin({\frac{π}{3}x+\frac{π}{6}})$的图象可由函数$y=cos\frac{π}{3}x$的图象至少向右平移m(m>0)个单位长度得到,则m=( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |