题目内容
19.从1,2,3,4,5,6,7中任取一个数,则取出的数大于3或能被3整除的概率为$\frac{5}{7}$.分析 先计算出所有基本事件的个数,并计算出满足条件的基本事件个数,然后代入古典概型公式,即可得到答案.
解答 解:从1,2,3,4,5,6,7中任取一个数,共7种情况,则取出的数大于3或能被3整除的为3,4,5,6,7,共5种,
则取出的数大于3或能被3整除的概率P=$\frac{5}{7}$,
故答案为:$\frac{5}{7}$
点评 本题考查的知识点是古典概型,属基础题.
练习册系列答案
相关题目
10.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
若由资料知,y与x呈线性相关关系,
(1)试求线性回归方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估计使用年限为10年时,维修费用是多少?
注:$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$$\overline{x}$.
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)试求线性回归方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$;
(2)估计使用年限为10年时,维修费用是多少?
注:$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$=$\frac{\sum_{i-1}^{i-n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{i-n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\{b}\end{array}\right.$$\overline{x}$.
11.已知数列{an}为等差数列,若a2+a3+a4=π,则cos(a1+a5)的值为( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |