题目内容
4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,$b=\sqrt{3},c=3,B={30°}$,则边a=$\sqrt{3}$或2$\sqrt{3}$.分析 由已知结合正弦定理求出C=60°或C=120°.然后分类求出a的值.
解答 解:在△ABC中,由b=$\sqrt{3}$,c=3,B=30°,结合正弦定理可得,$\frac{b}{sinB}=\frac{c}{sinC}$,即$\frac{\sqrt{3}}{sin30°}$=$\frac{3}{sinC}$,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵0°<C<180°,
∴C=60°或C=120°.
若C=60°,则A=90°,则a2=b2+c2=3+9=12,a=2$\sqrt{3}$;
若C=120°,则A=30°,此时a=b=$\sqrt{3}$.
故答案为:$\sqrt{3}$或2$\sqrt{3}$.
点评 本题考查正弦定理在解三角形中的应用,考查了分类讨论的数学思想方法,是基础题.
练习册系列答案
相关题目
14.甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| 优 秀 | 不优秀 | |
| 甲 班 | 10 | 35 |
| 乙 班 | 7 | 38 |
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
12.不等式2x2-x-1>0的解集是( )
| A. | (-∞,-$\frac{1}{2}$)∪(1,+∞) | B. | (-∞,1)∪(2,+∞) | C. | (1,+∞) | D. | (-$\frac{1}{2}$,1) |
9.f(x)=$\sqrt{3}sin(2x-\frac{π}{12})-cos(2x-\frac{π}{12})$在x∈$[0,\frac{π}{2}]$的对称轴为( )
| A. | $x=\frac{π}{8}$ | B. | $x=\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{3π}{8}$ |
16.已知全集U=R,集合A={x|-2<x<2},B={x|(1+x)(3-x)≥0},则A∩B等于( )
| A. | [-2,2) | B. | [-1,2) | C. | (-2,-1) | D. | (2,3) |
14.从区间(0,2)上任取一个实数m,则直线x-$\sqrt{3}$y=0与圆(x-1)2+y2=m(m>0)相交的概率为( )
| A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |