题目内容
8.已知数列{an}中,${a_n}=\frac{1}{{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1}}}$,则S4=$\frac{3-\sqrt{5}}{2}$.分析 ${a_n}=\frac{1}{{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1}}}$=$\frac{1}{2}(\frac{1}{\sqrt{n-1}+\sqrt{n}}-\frac{1}{\sqrt{n}+\sqrt{n+1}})$.利用裂项求和方法即可得出.
解答 解:${a_n}=\frac{1}{{(\sqrt{n-1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n}+\sqrt{n+1}}}$=$\frac{1}{2}(\frac{1}{\sqrt{n-1}+\sqrt{n}}-\frac{1}{\sqrt{n}+\sqrt{n+1}})$.
则S4=$\frac{1}{2}[(1-\frac{1}{1+\sqrt{2}})$+$(\frac{1}{1+\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{3}})$+$(\frac{1}{\sqrt{2}+\sqrt{3}}-\frac{1}{\sqrt{3}+2})$+$(\frac{1}{\sqrt{3}+2}-\frac{1}{2+\sqrt{5}})]$
=$\frac{1}{2}(1-\frac{1}{2+\sqrt{5}})$
=$\frac{3-\sqrt{5}}{2}$.
故答案为:$\frac{3-\sqrt{5}}{2}$.
点评 本题考查了裂项求和方法法、分母有理化,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
16.已知全集U=R,集合A={x|-2<x<2},B={x|(1+x)(3-x)≥0},则A∩B等于( )
| A. | [-2,2) | B. | [-1,2) | C. | (-2,-1) | D. | (2,3) |