题目内容

已知角α的终边过点P(x,-1),且sinα=
5
10
x.(其中x<0)
(1)求tanα的值;
(2)求
1-cos(π-α)
tan2α+cos(α+
π
2
)-
4
3
的值.
考点:同角三角函数基本关系的运用,任意角的三角函数的定义
专题:三角函数的求值
分析:(1)利用任意角的三角函数定义表示出sinα,根据已知等式列出关于x的方程,求出方程的解得到x的值,即可确定出tanα的值;
(2)原式利用诱导公式化简,将各自的值代入计算即可求出值.
解答: 解:(1)根据题意得:sinα=
-1
x2+1
=
5
10
x,
整理得:x4+x2-20=0,即(x2-4)(x2+5)=0,
解得:x=2或x=-2,
∵x<0,
∴x=-2,
∴sinα=-
5
5
,cosα=-
1-sin2α
=-
2
5
5

则tanα=
1
2

(2)∵tanα=
1
2

∴tan2α=
2tanα
1-tan2α
=
1
2
1-
1
4
=
4
3

原式=
1+cosα
tan2α-sinα-
4
3
=
1-
2
5
5
4
3
+
5
5
-
4
3
=
5
-2.
点评:此题考查了同角三角函数基本关系的运用,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网