题目内容

已知函数f(x)=2sinx(sinx+cosx),x∈R.
(1)求f(x)的最小正周期T和最大值M;
(2)若f(
α
2
+
π
8
)=-
1
3
,求cosα的值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(1)化简可得f(x)=
2
sin(2x-
π
4
)+1
,可求最小正周期T=
2
,最大值M=
2
+1

(2)依题意得
2
sin[2(
α
2
+
π
8
)-
π
4
]+1=-
1
3
,即
2
sinα+1=-
1
3
,从而可求sinα=-
2
2
3
cosα=±
1-sin2α
1
3
解答: 解:(1)∵f(x)=sin2x+1-cos2x…(2分),
=
2
sin(2x-
π
4
)+1
…(4分)
∴最小正周期T=
2
…(5分),最大值M=
2
+1
…(6分)
(2)依题意,
2
sin[2(
α
2
+
π
8
)-
π
4
]+1=-
1
3
…(7分)
2
sinα+1=-
1
3
…(8分),
sinα=-
2
2
3
…(10分)
cosα=±
1-sin2α
1
3
…(12分)
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网