题目内容
12.| A. | 1326 | B. | 510 | C. | 429 | D. | 336 |
分析 由题意可得,该表示为七进制,运用进制转换,即可得到所求的十进制数.
解答 解:由题意满七进一,可得该图示为七进制数,
化为十进制数为1×73+3×72+2×7+6=510.
故选:B.
点评 本题考查计数的方法,注意运用七进制转化为十进制数,考查运算能力,属于基础题.
练习册系列答案
相关题目
2.登山运动是一项有益身心健康的活动,但它受山上气温的限制.某登山爱好者为了了解某山上气温y(℃)与相应山高x(km)之间的关系,随机统计了5次山上气温与相应山高,如下表:
(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程:$\widehat{y}$=bx+$\widehat{a}$;
(2)若该名登山者携带物品足以应对山上-2.4℃的环境,试根据(1)中求出的线性回归方程预测,这名登山者最高可以攀登到多少千米处?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{i}({x}_{n}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$)
| 气温y(℃) | 18 | 16 | 10 | 4 | 2 |
| 山高(km) | 2.6 | 3 | 3.4 | 4.2 | 4.8 |
(2)若该名登山者携带物品足以应对山上-2.4℃的环境,试根据(1)中求出的线性回归方程预测,这名登山者最高可以攀登到多少千米处?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{i}({x}_{n}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$)
3.某厂生产某种新产品x件的总成本:C(x)=1200+$\frac{2}{75}$x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为( )
| A. | 25件 | B. | 20件 | C. | 15件 | D. | 30件 |
7.若A、B、C是△ABC的三个内角,则( )
| A. | sinA=sin(B+C) | B. | cosA=cos(B+C) | C. | tanA=tan(B+C) | D. | cotA=cot(B+C) |
17.在△ABC中,a=4,b=4,C=30°,则c2等于( )
| A. | 32-16$\sqrt{3}$ | B. | 32+16$\sqrt{3}$ | C. | 16 | D. | 48 |