题目内容
19.已知数列{an}满足an+1=an+$\frac{1}{n(n+1)}$,a1=$\frac{1}{2}$,求an.分析 由题意可得an+1-an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再用累加法求解.
解答 解:∵an+1=an+$\frac{1}{n(n+1)}$,
∴an+1-an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴a2-a1=1-$\frac{1}{2}$,
a3-a2=$\frac{1}{2}$-$\frac{1}{3}$,
…
an-an-1=$\frac{1}{n-1}$-$\frac{1}{n}$,
累加可得an-a1=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)=1-$\frac{1}{n}$,
∴an=$\frac{3}{2}$-$\frac{1}{n}$.
点评 本题考查了累加法求数列的通项公式,以及裂项求和,属于中档题.
练习册系列答案
相关题目
10.已知sinφ=$\frac{3}{5}$,且φ∈($\frac{π}{2}$,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,则f($\frac{π}{8}$)的值为( )
| A. | $\frac{\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{7\sqrt{2}}{10}$ | D. | -$\frac{7\sqrt{2}}{10}$ |
14.已知(1+px)(1-x+x2)8的展开式中x4项的系数是42,则p的值是( )
| A. | 1 | B. | 2 | C. | 4 | D. | 5 |
11.下面给出四个随机变量:
①一高速公路上某收费站在1小时内经过的车辆数ξ;
②一个沿直线y=x进行随机运动的质点,它在该直线上的位置η;
③某城市在1天内发生的火警次数;
④1天内的温度η.
其中是离散型随机变量的是( )
①一高速公路上某收费站在1小时内经过的车辆数ξ;
②一个沿直线y=x进行随机运动的质点,它在该直线上的位置η;
③某城市在1天内发生的火警次数;
④1天内的温度η.
其中是离散型随机变量的是( )
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F是右焦点,过F作双曲线C在第一、第三象限渐近线的垂线l,若l与双曲线的左右两支都相交,则双曲线的离心率e的取值范围是( )
| A. | ($\sqrt{2}$,+∞) | B. | ($\sqrt{3}$,+∞) | C. | (2,+∞) | D. | ($\sqrt{5}$,+∞) |