ÌâÄ¿ÄÚÈÝ
9£®Éú²úÒ»¶¨ÊýÁ¿µÄÉÌÆ·µÄÈ«²¿·ÑÓóÆÎªÊÐÉú²ú³É±¾£¬Ä³ÆóÒµÒ»¸öÔÂÉú²úijÖÖÉÌÆ·xÍò¼þʱµÄÉú²ú³É±¾ÎªC£¨x£©=$\frac{1}{2}$x2+2x+20£¨ÍòÔª£©£¬Ã¿Ò»Íò¼þÊÛ¼ÛÊÇ20ÍòÔª£¬ÇÒÉú²úµÄ²úÆ·È«²¿ÊÛÍ꣬Ôò¸ÃÆóÒµÒ»¸öÔµÄÀûÈóQ£¨x£©=£¨¡¡¡¡£©| A£® | $\frac{1}{2}$x2-18x+20 | B£® | -$\frac{1}{2}$x2+18x-20 | C£® | $\frac{1}{2}$x2+2x | D£® | $\frac{1}{2}$x2-18x |
·ÖÎö ÀûÓá°ÀûÈó=ÏúÊÛÊÕÈë-³É±¾¡±¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£ºQ£¨x£©=20x-C£¨x£©
=20x-£¨$\frac{1}{2}$x2+2x+20£©
=-$\frac{1}{2}$x2+18x-20£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚº¯ÊýµÄ¼òµ¥Ó¦ÓÃÌ⣬¿¼²é·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®PÊÇÔ²x2+y2=1Éϵ͝µã£¬×÷PD¡ÍyÖᣬDΪ´¹×㣬ÔòPDÖеãµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
| A£® | $\frac{{x}^{2}}{\frac{1}{4}}$+$\frac{{y}^{2}}{1}$=1 | B£® | $\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1 | C£® | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{1}$=1 | D£® | $\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1 |