题目内容
12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=$\frac{π}{4}$与曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为($\frac{5}{2}$,$\frac{5}{2}$).分析 射线θ=$\frac{π}{4}$的直角坐标方程为y=x(x≥0),把曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数),消去参数,化为直角坐标方程为y=(x-2)2.联立方程组求出A、B两点坐标,由此能求出AB的中点的直角坐标.
解答 解:射线θ=$\frac{π}{4}$的直角坐标方程为y=x(x≥0),
把曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数),消去参数,化为直角坐标方程为y=(x-2)2.
联立$\left\{\begin{array}{l}{y=x}\\{y=(x-2)^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,
∴A(1,1),B(4,4),
∴AB的中点为($\frac{5}{2},\frac{5}{2}$).
故答案为:($\frac{5}{2},\frac{5}{2}$).
点评 本题考查两点的中点坐标的求法,是中档题,解题时要认真审题,注意极坐标方程、参数方程和普通方程的相互转化及中点坐标公式的合理运用.
练习册系列答案
相关题目
20.2loga(M-2N)=logaM+logaN,则$\frac{M}{N}$的值为( )
| A. | $\frac{1}{4}$ | B. | 4 | C. | 1 | D. | 4或1 |
17.在△ABC中,若sinA:sinB:sinC=3:4:6,则cosC=( )
| A. | $\frac{11}{24}$ | B. | $\frac{13}{24}$ | C. | -$\frac{13}{24}$ | D. | -$\frac{11}{24}$ |
4.下列关于命题的说法错误的是( )
| A. | 若命题p:?n∈N,2n>1000,则¬p:?n∈N,2n≤1000 | |
| B. | 命题“若x2-3x+2=0,则x=1”,逆否命题为“若x≠1,则x2-3x+2≠0”; | |
| C. | “a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件; | |
| D. | 命题“?x∈(-∞,0),2x<3x”是真命题 |
2.下列各对向量中,互相不垂直的是( )
| A. | $\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(4,3) | B. | $\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,-2) | C. | $\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(1,2) | D. | $\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=(1,1) |