题目内容

12.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=$\frac{π}{4}$与曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为($\frac{5}{2}$,$\frac{5}{2}$).

分析 射线θ=$\frac{π}{4}$的直角坐标方程为y=x(x≥0),把曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数),消去参数,化为直角坐标方程为y=(x-2)2.联立方程组求出A、B两点坐标,由此能求出AB的中点的直角坐标.

解答 解:射线θ=$\frac{π}{4}$的直角坐标方程为y=x(x≥0),
把曲线$\left\{\begin{array}{l}{x=t}\\{y=(t-2)^{2}}\end{array}\right.$(t为参数),消去参数,化为直角坐标方程为y=(x-2)2
联立$\left\{\begin{array}{l}{y=x}\\{y=(x-2)^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,
∴A(1,1),B(4,4),
∴AB的中点为($\frac{5}{2},\frac{5}{2}$).
故答案为:($\frac{5}{2},\frac{5}{2}$).

点评 本题考查两点的中点坐标的求法,是中档题,解题时要认真审题,注意极坐标方程、参数方程和普通方程的相互转化及中点坐标公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网