题目内容

14.已知实数a,b满足$\left\{{\begin{array}{l}{0<a<2}\\{0<b<2}\end{array}}\right.$,则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在x轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 表示焦点在x轴上且离心率小于$\frac{\sqrt{3}}{2}$的椭圆时,(a,b)点对应的平面图形的面积大小和区域$\left\{{\begin{array}{l}{0<a<2}\\{0<b<2}\end{array}}\right.$的面积比值,即是所求的概率.

解答 解:∵方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在x轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆,
∴a>b>0,且$\frac{c}{a}$<$\frac{\sqrt{3}}{2}$,即$\frac{{a}^{2}{-b}^{2}}{{a}^{2}}$<$\frac{3}{4}$,即a<2b;
∴$\left\{\begin{array}{l}{a>b>0}\\{a<2b}\end{array}\right.$,
它对应的平面区域如图中阴影部分所示:

则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在x轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的概率为
P=$\frac{{S}_{△OAD}}{{S}_{矩形OABC}}$=$\frac{\frac{1}{2}×2×1}{2×2}$=$\frac{1}{4}$.
故选:C.

点评 本题考查了几何概型的应用问题,也考查了椭圆离心率的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网