题目内容

17.已知公差不为0的等差数列{an}的首项a1为1,前n项和为Sn,且a1,a2,a4成等比数列,则$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$=$\frac{15}{8}$.

分析 利用等差数列通项公式和a1,a2,a4成等比数列,求出d=1,从而$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}-\frac{1}{n+1}$),由此利用裂项求和法能求出$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$的值.

解答 解:∵公差不为0的等差数列{an}的首项a1为1,前n项和为Sn
且a1,a2,a4成等比数列,
∴${{(a}_{1}+d)}^{2}={a}_{1}({a}_{1}+3d)$,
即(1+d)2=1+3d,
解得d=1或d=0(舍),
∴Sn=$n+\frac{n(n-1)}{2}×1$=$\frac{{n}^{2}+n}{2}$,
∴$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}-\frac{1}{n+1}$),
∴$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$=$\frac{1}{2}$(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{15}-\frac{1}{16}$)=$\frac{15}{8}$.
故答案为:$\frac{15}{8}$.

点评 本题考查等差数列中前n项和的倒数的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网