ÌâÄ¿ÄÚÈÝ
11£®¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬ÈôÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆÎªº¯Êýf£¨x£©µÄÉϽ磺£¨1£©Éèf£¨x£©=$\frac{x}{x+1}$£¬ÅжÏf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇ·ñÓн纯Êý£¬ÈôÊÇ£¬Çë˵Ã÷ÀíÓÉ£¬²¢Ð´³öf£¨x£©µÄËùÓÐÉϽçµÄÖµµÄ¼¯ºÏ£¬Èô²»ÊÇ£¬Ò²Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èôº¯Êýg£¨x£©=1+a•£¨$\frac{1}{2}$£©x+£¨$\frac{1}{4}$£©xÔÚ[0£¬+¡Þ£©ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©»¯¼ò¿ÉµÃf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇÔöº¯Êý£»´Ó¶ø¿ÉµÃ|f£¨x£©|¡Ü1£¬´Ó¶øÇóµÃ£»
£¨2£©ÓÉÌâÒâÖª-3¡Ü1+a•£¨$\frac{1}{2}$£©x+£¨$\frac{1}{4}$£©x¡Ü3ÔÚ[0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬´Ó¶ø¿ÉµÃ-£¨4•2x+2-x£©¡Üa¡Ü2•2x-2-xÔÚ[0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬´Ó¶øÇóµÃ£®
½â´ð ½â£º£¨1£©f£¨x£©=$\frac{x}{x+1}$=1-$\frac{1}{x+1}$£¬
Ôòf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇÔöº¯Êý£»
¹Êf£¨-$\frac{1}{2}$£©¡Üf£¨x£©¡Üf£¨$\frac{1}{2}$£©£»
¼´-1¡Üf£¨x£©¡Ü$\frac{1}{3}$£¬
¹Ê|f£¨x£©|¡Ü1£¬
¹Êf£¨x£©ÊÇÓн纯Êý£»
¹Êf£¨x£©µÄËùÓÐÉϽçµÄÖµµÄ¼¯ºÏÊÇ[1£¬+¡Þ£©£»
£¨2£©¡ßg£¨x£©=1+a•£¨$\frac{1}{2}$£©x+£¨$\frac{1}{4}$£©xÔÚ[0£¬+¡Þ£©ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬
¡à-3¡Ü1+a•£¨$\frac{1}{2}$£©x+£¨$\frac{1}{4}$£©x¡Ü3ÔÚ[0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
¡à-£¨4•2x+2-x£©¡Üa¡Ü2•2x-2-xÔÚ[0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
¶ø-£¨4•2x+2-x£©ÔÚ[0£¬+¡Þ£©ÉϵÄ×î´óֵΪ-5£»
2•2x-2-xÔÚ[0£¬+¡Þ£©ÉϵÄ×îСֵΪ1£»
¹Ê-5¡Üa¡Ü1£»
¹ÊʵÊýaµÄȡֵ·¶Î§Îª[-5£¬1]£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔµÄÅжÏÓëÓ¦Óã¬Í¬Ê±¿¼²éÁËѧÉúµÄѧϰÄÜÁ¦¼°×ª»¯Ë¼ÏëµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| A£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | B£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | ||
| C£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | D£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» |
| A£® | a¡Ý8 | B£® | a£¼8 | C£® | a¡Ý4 | D£® | a£¼4 |
| A£® | 2¦Ð | B£® | ¦Ð | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{¦Ð}{4}$ |
| A£® | £¨x+$\frac{3}{5}$£©2+£¨y-$\frac{9}{5}$£©2=$\frac{19}{5}$ | B£® | £¨x-$\frac{3}{5}$£©2+£¨y-$\frac{9}{5}$£©2=$\frac{19}{5}$ | C£® | £¨x-$\frac{3}{5}$£©2+£¨y+$\frac{9}{5}$£©2=$\frac{19}{5}$ | D£® | ÒÔÉ϶¼²»¶Ô |
| A£® | 5 | B£® | 4 | C£® | 3 | D£® | 1 |