ÌâÄ¿ÄÚÈÝ
5£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨x1£¬y1£¬z1£©£¬$\overrightarrow{b}$=£¨x2£¬y2£¬z2£©£¬Ôò$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$ÊÇÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$¹²Ïߵijä·Ö²»±ØÒªÌõ¼þ£®·ÖÎö ¸ù¾Ý³ä·ÖÐԺͱØÒªÐԵ͍ÒåÖ¤Ã÷Åжϼ´¿É£®
½â´ð ½â£º²»·ÁÉè$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$=¦Ë
¡àx1=¦Ëx2£¬y1=¦Ëy2£¬z1=¦Ëz2£¬
¡à$\overrightarrow{a}$=£¨x1£¬y1£¬z1£©=¦Ë£¨x2£¬y2£¬z2£©=¦Ë$\overrightarrow{b}$£¬
¡àÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$¹²Ïߣ¬
²»·ÁÁîx1=0£¬y2=y1£¬z2=z1£¬²»Âú×ã$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$£¬±ØÒªÐÔ²»³ÉÁ¢£»
ËùÒÔÊdzä·Ö²»±ØÒªÌõ¼þ£®
µãÆÀ ±¾Ì⿼²éÁ˳ä·ÖÓë±ØÒªÌõ¼þµÄÅжÏÎÊÌ⣬Ҳ¿¼²éÁ˿ռäÏòÁ¿µÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®Ò»¶¯Ô²ÓëÔ²£¨x-2£©2+y2=1¼°yÖá¶¼ÏàÇУ®Ôò¶¯Ô²Ô²ÐĵĹ켣ÊÇ£¨¡¡¡¡£©
| A£® | Ò»µã | B£® | Á½µã | C£® | Ò»ÌõÅ×ÎïÏß | D£® | Á½ÌõÅ×ÎïÏß |
17£®
ÒÑÖªÈçͼËùʾµÄÈýÀâ×¶D-ABCµÄËĸö¶¥µã¾ùÔÚÇòOµÄÇòÃæÉÏ£¬¡÷ABCºÍ¡÷DBCËùÔÚÆ½ÃæÏ໥´¹Ö±£¬AB=3£¬AC=$\sqrt{3}$£¬BC=CD=BD=2$\sqrt{3}$£¬ÔòÇòOµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 4¦Ð | B£® | 12¦Ð | C£® | 16¦Ð | D£® | 36¦Ð |
14£®ÒÑÖªº¯Êýf£¨x£©=x2+2x+a-1£¬µ±x¡Ê£¨-¡Þ£¬-3£©Ê±£¬f£¨x£©£¾0ºã³ÉÁ¢£®ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | a£¾-2 | B£® | a¡Ý-2 | C£® | a£¾2 | D£® | a¡Ý2 |