题目内容
Sn=
+
+…+
,且Sn•Sn+1=
,则n=( )
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| n(n+1) |
| 3 |
| 4 |
分析:由于
=
-
,利用“裂项求和”即可得出Sn,再利用Sn•Sn+1=
,即可解出.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
解答:解:∵
=
-
,
∴Sn=(1-
)+(
-
)+…+(
-
)=1-
=
,
∵Sn•Sn+1=
,
∴
•
=
,解得n=6.
故选D.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
∵Sn•Sn+1=
| 3 |
| 4 |
∴
| n |
| n+1 |
| n+1 |
| n+2 |
| 3 |
| 4 |
故选D.
点评:本题考查了数列的“裂项求和”方法,属于基础题.
练习册系列答案
相关题目
设Sn=
+
+
+…+
,若Sn•Sn+1=
,则n的值为( )
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
| 3 |
| 4 |
| A、6 | B、7 | C、8 | D、9 |