题目内容
设Sn=
+
+
+…+
, 且 Sn•Sn+1=
,则n的值为
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
| 3 |
| 4 |
6
6
.分析:由于
=
-
,先利用裂项求和求出Sn=
+
+…+
,再代入Sn•Sn+1=
可求n
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| n(n+1) |
| 3 |
| 4 |
解答:解:由于
=
-
Sn=
+
+…+
=1-
+
-
+…+
-
=1-
=
Sn•Sn+1=
•
=
=
∴n=6
故答案为:6
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Sn=
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
Sn•Sn+1=
| n |
| n+1 |
| n+1 |
| n+2 |
| n |
| n+2 |
| 3 |
| 4 |
∴n=6
故答案为:6
点评:本题主要考查了数列求和中的裂项求和方法的应用,属于基础试题.
练习册系列答案
相关题目
设Sn=
+
+
+…+
,若Sn•Sn+1=
,则n的值为( )
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
| 3 |
| 4 |
| A、6 | B、7 | C、8 | D、9 |