题目内容
(2006•嘉定区二模)设Sn=
+
+
+…+
,且Sn•Sn+1=
,则n的值是( )
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
| 3 |
| 4 |
分析:利用裂项相消求出Sn,代入Sn•Sn+1=
求解n的值.
| 3 |
| 4 |
解答:解:由Sn=
+
+
+…+
=(1-
)+(
-
)+…+(
-
)=1-
=
.
∴Sn+1=
.
再由Sn•Sn+1=
,得
•
=
=
.
解得n=6.
故选D.
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
∴Sn+1=
| n+1 |
| n+2 |
再由Sn•Sn+1=
| 3 |
| 4 |
| n |
| n+1 |
| n+1 |
| n+2 |
| n |
| n+2 |
| 3 |
| 4 |
解得n=6.
故选D.
点评:本题考查了数列的求和,考查了裂项相消法,是中档题.
练习册系列答案
相关题目