题目内容
2.| A. | 8 | B. | 12 | C. | 24 | D. | 36 |
分析 由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.
解答 解:由a=84,b=48,满足a>b,
则a变为84-48=36,
由b>a,则b变为48-36=12,
由a>b,则,a=36-12=24,
由a>b,则,a=24-12=12,
由a=b=12,
则输出的a=12.
故选:B.
点评 本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.
练习册系列答案
相关题目
12.点P(x,y)是直线kx+y+3=0上一动点,PA,PB是圆C:x2+y2-4y=0的两条切线,A,B是切点,若四边形PACB面积的最小值为2,则k的值为( )
| A. | $2\sqrt{2}$ | B. | $±2\sqrt{2}$ | C. | 2 | D. | ±2 |
17.
如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$的取值范围为( )
| A. | $[0,8+6\sqrt{2}]$ | B. | $[-2\sqrt{2},8+6\sqrt{2}]$ | C. | $[-8-6\sqrt{2},2\sqrt{2}]$ | D. | $[-8-6\sqrt{2},8+6\sqrt{2}]$ |
7.已知${({\frac{1}{a}+ax})^4}+{({\frac{1}{b}+bx})^4}$的展开式中x与x3的项的系数之比为1:4,则a4+b4的最小值为( )
| A. | 16 | B. | 12 | C. | 8 | D. | 4 |
14.某综艺节目为增强娱乐性,要求现场嘉宾与其场外好友连线互动.凡是拒绝表演节目的好友均无连线好友的机会;凡是选择表演节目的好友均需连线未参加过此活动的3个好友参与此活动,以此下去.
(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的3个好友中不少于2个好友选择表演节目的概率是多少?
(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如表:
①根据表中数据,是否有99%的把握认为“表演节目”与好友的性别有关?
②将此样本的频率视为总体的概率,随机调查3名男性好友,设X为3个人中选择表演的人数,求X的分布列和期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$;
(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的3个好友中不少于2个好友选择表演节目的概率是多少?
(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如表:
| 选择表演 | 拒绝表演 | 合计 | |
| 男 | 50 | 10 | 60 |
| 女 | 10 | 10 | 20 |
| 合计 | 60 | 20 | 80 |
②将此样本的频率视为总体的概率,随机调查3名男性好友,设X为3个人中选择表演的人数,求X的分布列和期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$;
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
11.在△ABC中,$B=\frac{π}{6}$,BC边上的高等于$\frac{{\sqrt{3}}}{9}BC$,则cosA=( )
| A. | $\frac{{5\sqrt{13}}}{26}$ | B. | $-\frac{{5\sqrt{13}}}{26}$ | C. | $-\frac{{3\sqrt{39}}}{26}$ | D. | $\frac{{3\sqrt{39}}}{26}$ |