ÌâÄ¿ÄÚÈÝ
9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãΪF£¨$\sqrt{2}$£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÔµãµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¨A£¬B²»ÊÇÍÖÔ²CµÄ¶¥µã£©£¬µãDÔÚÍÖÔ²CÉÏ£¬ÇÒAD¡ÍAB£¬Ö±ÏßBDÓëxÖá¡¢yÖá·Ö±ð½»ÓÚM¡¢NÁ½µã£¬ÉèÖ±ÏßBD£¬AMµÄбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷£º´æÔÚ³£Êý¦ËʹµÃk1=¦Ëk2£¬²¢Çó³ö¦ËµÄÖµ£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{c=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬D£¨x2£¬y2£©£®Ö±ÏßABµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢½âµÃA£¬BµÄ×ø±ê£¬¿ÉµÃÖ±ÏßADµÄ·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃDµÄ×ø±ê£¬¿ÉµÃÖ±ÏßBDµÄ·½³Ì£¬ÔÙÀûÓÃбÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð
£¨1£©½â£ºÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{c=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃc=$\sqrt{2}$£¬a=$\sqrt{3}$£¬b=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}$=1£»
£¨2£©Ö¤Ã÷£ºÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬D£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬½âµÃA$£¨\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£¬B$£¨\frac{-\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬\frac{-\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£®
¡ßAD¡ÍAB£¬¡àÖ±ÏßADµÄ·½³ÌΪ£ºy-$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$=$-\frac{1}{k}$$£¨x-\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}£©$£®
»¯Îªy=-$\frac{1}{k}$x+$\frac{\sqrt{3}£¨1+{k}^{2}£©}{k\sqrt{1+3{k}^{2}}}$£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}^{2}}{3}$+$[-\frac{1}{k}x+\frac{\sqrt{3}£¨1+{k}^{2}£©}{k\sqrt{1+3{k}^{2}}}]^{2}$=1£¬
»¯Îª£º$\sqrt{1+3{k}^{2}}£¨{k}^{2}+3£©{x}^{2}$-$6\sqrt{3}$£¨1+k2£©x+$\frac{3£¨5{k}^{2}+3£©}{\sqrt{1+3{k}^{2}}}$=0£®
½âµÃx1=$\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}$£¬x2=$\frac{\sqrt{3}£¨5{k}^{2}+3£©}{£¨{k}^{2}+3£©\sqrt{1+3{k}^{2}}}$£¬
y1=$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$£®
y2=$\frac{\sqrt{3}k£¨{k}^{2}-1£©}{£¨{k}^{2}+3£©\sqrt{1+3{k}^{2}}}$£®
¡àkBD=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{k}{3}$=k1£®
BDµÄ·½³ÌΪ£ºy+$\frac{\sqrt{3}k}{\sqrt{1+3{k}^{2}}}$=$\frac{k}{3}$$£¨x+\frac{\sqrt{3}}{\sqrt{1+3{k}^{2}}}£©$£¬
Áîy=0£¬½âµÃxM=$\frac{2\sqrt{3}}{\sqrt{1+3{k}^{2}}}$£¬¡àM$£¨\frac{2\sqrt{3}}{\sqrt{1+3{k}^{2}}}£¬0£©$£®
¡àk2=$\frac{{y}_{1}}{{x}_{1}-{x}_{M}}$=-k£®
¡à3k1=-k2£®
¡à¦Ë=-$\frac{1}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ï໥´¹Ö±µÄбÂÊÖ®¼äµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | x+4y+4=0 | B£® | x-4y-4=0 | C£® | x-4y+4=0 | D£® | x+4y-4=0 |
| A£® | $\frac{53}{3}$¦Ð | B£® | $\frac{55}{3}$¦Ð | C£® | 18¦Ð | D£® | $\frac{76}{3}$¦Ð |
| A£® | 1 | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{\sqrt{5}}{2}$ | D£® | $\sqrt{5}$ |
| A£® | 4$\sqrt{3}$¦Ð | B£® | 12¦Ð | C£® | 24¦Ð | D£® | 48¦Ð |