题目内容
16.设非空数集A={x|-3≤x≤a},B={y|y=3x+10,x∈A},C={z|z=5-x,x∈A}且B∩C=C,则实数a的取值范围是[-$\frac{2}{3}$,4].分析 通过求解集合B,利用B∩C=C列出关系式求出a的范围即可.
解答 解:集合B={y|y=3x+10,x∈A}=[1,3a+10],
C={z|z=5-x,x∈A}=[5-a,8],
∵B∩C=C,
∴C⊆B,
可得:$\left\{\begin{array}{l}{1≤5-a}\\{8≤3a+10}\\{a>-3}\end{array}\right.$,
解得-$\frac{2}{3}$≤a≤4,
即实数a的取值范围:[-$\frac{2}{3}$,4].
故答案为:[-$\frac{2}{3}$,4].
点评 本题考查集合的关系,交集的运算,不等式组的解法,考查转化思想以及计算能力.
练习册系列答案
相关题目
7.△ABC的内角A、B、C的对边分别为a、b、c.若cosB=$\frac{3}{4}$,且c=2a,则( )
| A. | a、b、c成等差数列 | B. | a、b、c成等比数列 | ||
| C. | △ABC是直角三角形 | D. | △ABC是等腰三角形 |
11.设全集∪={a,b,c,d},集合M={ a,c,d },N={b,d},则(∁UM)∩N等于( )
| A. | {b} | B. | {d} | C. | {a,c} | D. | {b,d} |
6.设函数f(x)=3x+cos(x+φ),x∈R,则“φ=$\frac{π}{2}$”是“函数f(x)为奇函数”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |