题目内容
14.设a∈R,若复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为2,则a的值为( )| A. | 7 | B. | -7 | C. | 5 | D. | -5 |
分析 直接利用复数代数形式的乘除运算化简复数z,结合已知条件即可求出a的值.
解答 解:z=$\frac{a-i}{3+i}$=$\frac{(a-i)(3-i)}{(3+i)(3-i)}=\frac{(3a-1)-(3+a)i}{10}$=$\frac{3a-1}{10}-\frac{3+a}{10}i$,
∵复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为2,
∴$\frac{3a-1}{10}=2$,解得:a=7.
故选:A.
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
5.在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$)
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
| 成绩/编号 | 1 | 2 | 3 | 4 | 5 |
| 物理(x) | 90 | 85 | 74 | 68 | 63 |
| 数学(y) | 130 | 125 | 110 | 95 | 90 |
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
2.已知O为坐标原点,F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,双曲线C上一点P满足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,且|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2a2,则双曲线C的渐近线方程为( )
| A. | y=±x | B. | y=±$\sqrt{2}$x | C. | y=±$\sqrt{3}$x | D. | y=±2x |
9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0,且a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是( )
| A. | [$\frac{1}{7}$,$\frac{1}{5}$]∪{3} | B. | [3,5]∪{$\frac{1}{7}$} | C. | [$\frac{1}{7}$,$\frac{1}{3}$)∪{5} | D. | [3,7)∪{$\frac{1}{5}$} |
8.下列函数中,在其定义域内,既是奇函数又是减函数的是( )
| A. | f(x)=x3 | B. | f(x)=$\sqrt{-x}$ | C. | f(x)=2-x-2x | D. | f(x)=-lg|x| |
5.已知实数x,y满足$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,则目标函数z=2x-y的最大值为( )
| A. | -3 | B. | $\frac{1}{2}$ | C. | 5 | D. | 6 |
6.正方体ABCD-A1B1C1D1中与AD1垂直的平面是( )
| A. | 平面DD1C1C | B. | 平面A1DB | C. | 平面A1B1C1D1 | D. | 平面A1DB1 |