题目内容

7.已知f(x)=2x-2-x,a=($\frac{7}{9}$)${\;}^{\frac{1}{2}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{3}}$,c=log2$\frac{7}{9}$,则f(a),f(b),f(c)的大小顺序为(  )
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

分析 利用f(x)在R上单调递增,a∈(0,1),b>1,c<0,即可得出.

解答 解:f(x)=2x-2-x=2x-$\frac{1}{{2}^{x}}$在R上单调递增.
a=($\frac{7}{9}$)${\;}^{\frac{1}{2}}$∈(0,1),b=($\frac{9}{7}$)${\;}^{\frac{1}{3}}$>1,c=log2$\frac{7}{9}$<0,
则f(a),f(b),f(c)的大小顺序为f(c)<f(a)<f(b).
故选:C.

点评 本题考查了对数函数与指数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网