题目内容
1.在复平面内复数$z=\frac{{|2\sqrt{3}-2i|+bi}}{1-i}({b>0})$的模为$\sqrt{26}$,则复数z-bi在复平面上对应的点在( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 求出b的值,从而求出z-bi对应的点所在的象限即可.
解答 解:$z=\frac{{|2\sqrt{3}-2i|+bi}}{1-i}({b>0})$=$\frac{4+bi}{1-i}$=$\frac{(4+bi)(1+i)}{(1-i)(1+i)}$=$\frac{4-b}{2}$+$\frac{4+b}{2}$i,
故|z|=$\sqrt{{(\frac{4-b}{2})}^{2}{+(\frac{4+b}{2})}^{2}}$=$\sqrt{26}$,解得:b=6,
∴z=-1+5i,
∴z-bi=-1+5i-6i=-1-i,
故复数z-bi在复平面上对应的点在第三象限,
故选:C.
点评 本题考查了复数求模问题,考查复数的运算性质,是一道基础题.
练习册系列答案
相关题目
11.$\int_0^1{|x-1|}dx$=( )
| A. | 1 | B. | 2 | C. | 3 | D. | $\frac{1}{2}$ |
9.若全集U={1,2,3,4,5},M={1,4},N={2,3},则集合{5}等于( )
| A. | M∪N | B. | M∩N | C. | (∁UM)∪(∁UN) | D. | (∁UM)∩(∁UN) |
10.F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左右焦点,点P在双曲线上,满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,若△PF1F2的内切圆半径与外接圆半径之比为$\frac{\sqrt{3}-1}{2}$,则该双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$+1 | D. | $\sqrt{3}$+1 |