题目内容

5.已知直线y=k(x-2)与抛物线$Γ:{y^2}=\frac{1}{2}x$相交于A,B两点,M是线段AB的中点,过M作y轴的垂线交Γ于点N.
(Ⅰ)证明:抛物线Γ在点N处的切线与AB平行;
(Ⅱ)是否存在实数k使$\overrightarrow{NA}•\overrightarrow{NB}=0$?若存在,求k的值;若不存在,说明理由.

分析 (Ⅰ)由$\left\{\begin{array}{l}y=k({x-2})\\{y^2}=\frac{1}{2}x\end{array}\right.$消去y并整理,设A(x1,y1),B(x2,y2),利用韦达定理求出MN坐标,写出抛物线Γ在点N处的切线l的方程为$y-\frac{1}{4k}=m({x-\frac{1}{{8{k^2}}}})$,将x=2y2代入上式,推出m=k,即可证明l∥AB.
(Ⅱ)假设存在实数k,使$\overrightarrow{NA}•\overrightarrow{NB}=0$,则NA⊥NB,利用(Ⅰ),求出弦长,然后求出斜率,说明存在实数k使$\overrightarrow{NA}•\overrightarrow{NB}=0$.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}y=k({x-2})\\{y^2}=\frac{1}{2}x\end{array}\right.$消去x并整理,得2k2x2-(8k2+1)x+8k2=0,
设A(x1,y1),B(x2,y2),则${x_1}+{x_2}=\frac{{8{k^2}+1}}{{2{k^2}}},{x_1}{x_2}=4$,∴${x_M}=\frac{{{x_1}+{x_2}}}{2}=\frac{{8{k^2}+1}}{{4{k^2}}}$,${y_M}=k({{x_M}-2})=k({\frac{{8{k^2}+1}}{{4{k^2}}}-2})=\frac{1}{4k}$,
由题设条件可知,${y_N}={y_M}=\frac{1}{4k}$,${x_N}=2{y^2}_N=\frac{1}{{8{k^2}}}$,∴$N({\frac{1}{{8{k^2}}},\frac{1}{4k}})$,
设抛物线Γ在点N处的切线l的方程为$y-\frac{1}{4k}=m({x-\frac{1}{{8{k^2}}}})$,
将x=2y2代入上式,得$2m{y^2}-y+\frac{1}{4k}-\frac{m}{{8{k^2}}}=0$,
∵直线l与抛物线Γ相切,
∴$△={1^2}-4×2m×({\frac{1}{4k}-\frac{m}{{8{k^2}}}})=\frac{{{{({m-k})}^2}}}{k^2}=0$,
∴m=k,即l∥AB.
(Ⅱ)假设存在实数k,使$\overrightarrow{NA}•\overrightarrow{NB}=0$,则NA⊥NB,∵M是AB的中点,∴$|{MN}|=\frac{1}{2}|{AB}|$,
由(Ⅰ)得$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}•\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}$=$\sqrt{1+{k^2}}•\sqrt{{{({\frac{{8{k^2}+1}}{{2{k^2}}}})}^2}-4×4}=\sqrt{1+{k^2}}•\frac{{\sqrt{16{k^2}+1}}}{{2{k^2}}}$,
∵MN⊥y轴,
∴$|{MN}|=|{{x_M}-{x_N}}|=\frac{{8{k^2}+1}}{{4{k^2}}}-\frac{1}{{8{k^2}}}=\frac{{16{k^2}+1}}{{8{k^2}}}$,
∴$\frac{{16{k^2}+1}}{{8{k^2}}}=\frac{1}{2}\sqrt{1+{k^2}}•\frac{{\sqrt{16{k^2}+1}}}{{2{k^2}}}$,解得$k=±\frac{1}{2}$,
故存在$k=±\frac{1}{2}$,使$\overrightarrow{NA}•\overrightarrow{NB}=0$.

点评 本题考查直线与抛物线的位置关系的综合应用,定值问题的处理方法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网