题目内容

已知
OA
=(-1,1),
OB
=(0,-1),
OC
=(1,m)(m∈R)

(1)若A,B,C三点共线,求实数m的值;
(2)证明:对任意实数m,恒有 
CA
CB
≥1
成立.
(1)∵
OA
=(-1,1),
OB
=(0,-1),
OC
=(1,m)

CA
=(-2,1-m),
AB
=(1,-2)
…(2分)
∵A,B,C三点共线,
∴向量
CA
AB
是共线向量,得(-2)×(-2)=(1-m)×1…(5分)
∴解之得:m=-3…(7分)
(2)由(1),得
CA
=(-2,1-m),
CB
=(-1,-1-m)
…(9分)
CA
CB
=2-(1-m2)=m2+1≥1

即对任意实数m,恒有 
CA
CB
≥1
成立.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网