题目内容
5.设有白球与黑球各4个,从中任取4个放入甲盒,余下的4个放入乙盒,然后分别在两盒中各任取1个球,颜色正好相同,试问放入甲盒的4个球中有几个白球的概率最大?并求出此概率值.分析 A表示“从甲盒、乙盒中各取1球颜色相同”,Bi表示“甲盒中有i只球”,i=0,1,2,3,4,先分别求出P(Bi),再由全概率公式求出P(A),然后由贝叶斯公式分别求出P(B1|A),P(B2|A),P(B3|A),从而得到放入甲盒中,2只白球的概率最大.
解答 解:A表示“从甲盒、乙盒中各取1球颜色相同”,
Bi表示“甲盒中有i只球”,i=0,1,2,3,4,由题意知A?$\sum_{i=1}^{3}{B}_{i}$,
P(B1)$\frac{{C}_{4}^{1}{C}_{4}^{3}}{{C}_{8}^{4}}$=$\frac{8}{35}$,P(A|B1)=$\frac{1}{4}×\frac{3}{4}+\frac{3}{4}×\frac{1}{4}=\frac{3}{8}$,
P(B2)=$\frac{{C}_{4}^{2}{C}_{4}^{2}}{{C}_{8}^{4}}$=$\frac{18}{35}$,P(A|B2)=$\frac{2}{4}×\frac{2}{4}+\frac{2}{4}×\frac{2}{4}$=$\frac{4}{8}$,
P(B3)=$\frac{{C}_{4}^{3}{C}_{4}^{1}}{{C}_{8}^{4}}$=$\frac{8}{35}$,P(A|B3)=$\frac{3}{4}×\frac{1}{4}+\frac{1}{4}×\frac{3}{4}$=$\frac{3}{8}$,
由全概率公式得:P(A)=$\sum_{k=1}^{3}P({B}_{k})P(A|{B}_{k})$=$\frac{8}{35}×\frac{3}{8}+\frac{18}{35}×\frac{4}{8}+\frac{8}{35}×\frac{3}{8}$=$\frac{3}{7}$.
由贝叶斯公式,得P(B1|A)=$\frac{P({B}_{1})P(A{|B}_{1})}{P(A)}$=$\frac{1}{5}$,
P(B2|A)=$\frac{P({B}_{2})P(A|{B}_{2})}{P(A)}$=$\frac{3}{5}$,
P(B3|A)=$\frac{P({B}_{3})P(A|{B}_{3})}{P(A)}$=$\frac{1}{5}$.
∴放入甲盒中,2只白球的概率最大.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率、全概率公式、贝叶斯公式的合理运用.
| A. | a>1 | B. | a<1 | C. | a≥1 | D. | a≤1 |