题目内容
13.| A. | 66 | B. | 33 | C. | 16 | D. | 8 |
分析 由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=-1时,不满足条件i≥0,跳出循环,输出v的值为66.
解答 解:初始值n=4,x=2,程序运行过程如下表所示:
v=2,
i=4,v=,2×2+3=7,
i=2,v=14+2=16,
i=1,v=16×2+1=33,
i=0,v=33×2+0=66,
i=-1 跳出循环,输出v的值为66,
故选:A.
点评 本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的i,v的值是解题的关键,属于基础题.
练习册系列答案
相关题目
3.现有1名男同学和2名女同学参加演讲比赛,共有2道演讲备选题目,若每位选手从中有放回地随机选出一道题进行演讲,以下说法不正确的是( )
| A. | 三人都抽到同一题的概率为$\frac{1}{4}$ | |
| B. | 只有两名女同学抽到同一题的概率为$\frac{1}{4}$ | |
| C. | 其中恰有一男一女抽到同一道题的概率为$\frac{1}{2}$ | |
| D. | 至少有两名同学抽到同一题的概率为$\frac{3}{4}$ |
4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作倾斜角为30°的直线与双曲线左右两支各有一个交点,过点F作倾斜角为60°的直线与双曲线右支交于不同的两点,则该双曲线离心率的取值范围是( )
| A. | (1,$\frac{2\sqrt{3}}{3}$) | B. | ($\frac{2\sqrt{3}}{3}$,2) | C. | [$\frac{2\sqrt{3}}{3}$,2] | D. | (2,+∞) |
1.已知f(x)是定义在R上的奇函数,且周期为2,当x∈(0,1]时,f(x)=1-x,则函数f(x)在[0,2017]上的零点个数是( )
| A. | 1008 | B. | 1009 | C. | 2017 | D. | 2018 |
18.已知集合A={x|x2-2x>0},B=[0,4],则A∩B=( )
| A. | [-4,-1) | B. | (2,4] | C. | [-4,-1)∪(2,4] | D. | [2,4] |
2.已知等差数列{an}中,Sn为其前n项和,S4=π(其中π为圆周率),a4=2a2,现从此数列的前30项中随机选取一个元素,则该元素的余弦值为负数的概率为( )
| A. | $\frac{7}{15}$ | B. | $\frac{1}{2}$ | C. | $\frac{8}{15}$ | D. | $\frac{7}{30}$ |
3.已知抛物线y2=20x的焦点F恰好为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |