题目内容
19.曲线y=1-$\frac{16}{81}$x2与x轴所围图形的面积是3.分析 先求出曲线与x轴的交点,设围成的平面图形面积为A,利用定积分求出A即可.
解答 解:y=1-$\frac{16}{81}$x2,令y=0得x=±$\frac{9}{4}$
设曲线y=1-$\frac{16}{81}$x2与x轴围成图形的面积为A
则A=${∫}_{-\frac{9}{4}}^{\frac{9}{4}}$(1-$\frac{16}{81}$x2)dx=(x-$\frac{16}{243}$x3)${|}_{-\frac{9}{4}}^{\frac{9}{4}}$=3
故答案为:3.
点评 考查学生利用定积分求平面图形面积的能力,解题的关键是求出积分的上下限,属于基础题.
练习册系列答案
相关题目
9.下列函数中,在区间(0,1]上是增函数且最大值为-1的为( )
| A. | y=-x2 | B. | $y={(\frac{1}{2})^x}$ | C. | $y=-\frac{1}{x}$ | D. | y=2x |
10.如图是函数f(x)=Acos(ωx+φ)的一段图象,则函数f(x)图象上的最高点坐标为( )

| A. | ($\frac{kπ}{2}$,2),k∈Z | B. | (kπ,2),k∈Z | C. | (2kπ-$\frac{π}{6}$,2),k∈Z | D. | (kπ-$\frac{π}{12}$,2),k∈Z |
4.已知点P为抛物线C:x2=2py(p>0)上任意一点,O为坐标原点,点M(0,m),若|PM|≥|OM|恒成立,则实数m的取值范围为( )
| A. | (-∞,$\frac{p}{4}$] | B. | (-∞,$\frac{p}{2}$] | C. | (-∞,p] | D. | (-∞,2p] |
8.现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子不空,则A、B在同一盒中的概率是( )
| A. | $\frac{6}{25}$ | B. | $\frac{11}{25}$ | C. | $\frac{4}{15}$ | D. | $\frac{6}{15}$ |