题目内容
己知数{an}满足a1=1,an+1=an+2n,数列{bn}满足bn+1=bn+
,b1=1.
(1)求数列{an}的通项公式;
(2)令cn=
,记Sn=c1+c2+…+cn,求证:
≤Sn<1.
| ||
| n |
(1)求数列{an}的通项公式;
(2)令cn=
| 1 | ||
|
| 1 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an+1-an=2n,由此利用累加法能求出an=n2+n+1.
(2)由已知得
=
=
-
,从而
=
-
,进而cn<
[(
-
)-(
-
)],由此能证明
≤Sn<1.
(2)由已知得
| 1 |
| bn+1 |
| n |
| (n+bn)•bn |
| 1 |
| bn |
| 1 |
| n+bn |
| 1 |
| n+bn |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| 2 |
解答:
(1)解:∵{an}满足a1=1,an+1=an+2n,
∴an+1-an=2n,
∴an=a1+a2-a1+a3-a2+…+an+1-an
=1+2+4+6+…+2n
=1+2×
=n2+n+1.
(2)证明:∵bn+1=bn+
,b1=1,
∴bn+1=
=
,
∴
=
=
-
,
∴
=
-
,
∴cn=
=
<
(
+
)
=
[
+(
-
)]
=
[(
-
)-(
-
)],
∴Sn=c1+c2+…+cn
<
[(1-
+
-
+…+
-
)+(
-
+
-
+…+
-
)]
=
[(1-
)+(
-
)]
=
(2-
-
)<1,
又由cn=
=
,
得{cn}是增数列,∴Sn=c1+c2+…+cn≥c1=
=
,
∴
≤Sn<1.
∴an+1-an=2n,
∴an=a1+a2-a1+a3-a2+…+an+1-an
=1+2+4+6+…+2n
=1+2×
| n(n+1) |
| 2 |
=n2+n+1.
(2)证明:∵bn+1=bn+
| ||
| n |
∴bn+1=
| nbn+bn2 |
| n |
| (n+bn)•bn |
| n |
∴
| 1 |
| bn+1 |
| n |
| (n+bn)•bn |
| 1 |
| bn |
| 1 |
| n+bn |
∴
| 1 |
| n+bn |
| 1 |
| bn |
| 1 |
| bn+1 |
∴cn=
| 1 | ||
|
=
| 1 | ||
|
<
| 1 |
| 2 |
| 1 |
| an+1-1 |
| 1 |
| bn+n |
=
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| bn |
| 1 |
| bn+1 |
=
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| bn |
| 1 |
| bn+1 |
∴Sn=c1+c2+…+cn
<
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| bn+1 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| b1 |
| 1 |
| bn+1 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| bn+1 |
又由cn=
| 1 | ||
|
| 1 | ||
|
得{cn}是增数列,∴Sn=c1+c2+…+cn≥c1=
| 1 | ||
|
| 1 |
| 2 |
∴
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关题目
已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点C,D设直线AB,CD的斜率分别为k1,k2,则
等于( )
| k1 |
| k2 |
A、
| ||
B、
| ||
| C、1 | ||
| D、2 |
已知数列{an}的前n项和Sn=n2,则a2等于( )
| A、1 | B、3 | C、4 | D、5 |
已知动点M与F(1,0)的距离比它到直线l:x+3=0的距离小2,设M的轨迹为G,正项数列{an}满足a1=2,且(an,
)在曲线G上,则数列{an}的通项公式为( )
| 2an+1 |
| A、an=2n |
| B、an=2n-1 |
| C、an=2n+1 |
| D、an=2-1 |
若把函数 y=sin(x+
)的图象向右平移m(m>0)个单位长度后,得到y=sinx的图象,则m的最小值( )
| π |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|