题目内容

己知数{an}满足a1=1,an+1=an+2n,数列{bn}满足bn+1=bn+
b
2
n
n
b1
=1.
(1)求数列{an}的通项公式;
(2)令cn=
1
an+1bn+nan+1-bn-n
,记Sn=c1+c2+…+cn,求证:
1
2
Sn
<1.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an+1-an=2n,由此利用累加法能求出an=n2+n+1.
(2)由已知得
1
bn+1
=
n
(n+bn)•bn
=
1
bn
-
1
n+bn
,从而
1
n+bn
=
1
bn
-
1
bn+1
,进而cn
1
2
[(
1
n
-
1
n+1
)-(
1
bn
-
1
bn+1
)],由此能证明
1
2
Sn
<1.
解答: (1)解:∵{an}满足a1=1,an+1=an+2n,
∴an+1-an=2n,
∴an=a1+a2-a1+a3-a2+…+an+1-an
=1+2+4+6+…+2n
=1+2×
n(n+1)
2

=n2+n+1.
(2)证明:∵bn+1=bn+
b
2
n
n
b1
=1,
bn+1=
nbn+bn2
n
=
(n+bn)•bn
n

1
bn+1
=
n
(n+bn)•bn
=
1
bn
-
1
n+bn

1
n+bn
=
1
bn
-
1
bn+1

∴cn=
1
an+1bn+nan+1-bn-n

=
1
(an+1-1)(bn+n)

1
2
(
1
an+1-1
+
1
bn+n
)

=
1
2
[
1
n(n+1)
+(
1
bn
-
1
bn+1
)
]
=
1
2
[(
1
n
-
1
n+1
)-(
1
bn
-
1
bn+1
)],
∴Sn=c1+c2+…+cn
1
2
[(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)+(
1
b1
-
1
b2
+
1
b2
-
1
b3
+…+
1
bn
-
1
bn+1
)]
=
1
2
[(1-
1
n+1
)+(
1
b1
-
1
bn+1
)]

=
1
2
(2-
1
n+1
-
1
bn+1
)<1,
又由cn=
1
an+1bn+nan+1-bn-n
=
1
(an+1-1)(bn+n)

得{cn}是增数列,∴Sn=c1+c2+…+cn≥c1=
1
a2b1+a2-b1-1
=
1
2

1
2
Sn
<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网