题目内容
已知Sn是数列{an}的前n项和,且a1=
,
=
,则an= ,S2010= .
| 1 |
| 2 |
| an |
| an-1 |
| n-1 |
| n+1 |
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:利用“累乘求积”与“裂项求和”即可得出.
解答:
解:∵a1=
,
=
,
∴an=
•
•
•…•
•
•
=
•
•
•…•
×
×
=
=
-
.
∴S2010=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案分别为:
,
.
| 1 |
| 2 |
| an |
| an-1 |
| n-1 |
| n+1 |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| an-2 |
| an-3 |
| a3 |
| a2 |
| a2 |
| a1 |
| 1 |
| 2 |
| n-1 |
| n+1 |
| n-2 |
| n |
| n-3 |
| n-1 |
| 2 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S2010=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2010 |
| 1 |
| 2011 |
=1-
| 1 |
| 2011 |
=
| 2010 |
| 2011 |
故答案分别为:
| 1 |
| n(n+1) |
| 2010 |
| 2011 |
点评:本题考查了“累乘求积”与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目