题目内容

解关于x不等式|2x-1|-|x-2|<0.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
解答: 解:原不等式等价于不等式组①
x≥2
2x-1-(x-2)<0
,或②
1
2
<x<2
2x-1+(x-2)<0
,或③
x≤
1
2
-(2x-1)+(x-2)<0

不等式组①无解,由②得
1
2
<x<1
,由③得-1<x≤
1
2

综上得-1<x<1,所以,原不等式的解集为{x|-1<x<1}.
点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网