题目内容
双曲线
-
=1(a>0,b>0)的右焦点是抛物线y2=8x焦点F,两曲线的一个公共点为P,且|PF|=5,则此双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
| C、2 | ||||
D、
|
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线和双曲线有相同的焦点求得c=2,根据抛物线的定义可以求出P的坐标,运用双曲线的定义求得2a=2,然后求得离心率e.
解答:
解:抛物线y2=8x焦点F(2,0),准线方程为x=-2,
设P(m,n),
由抛物线的定义可得|PF|=m+2=5,
解得m=3,
则n2=24,即有P(3,±2
),
可得左焦点F'为(-2,0),
由双曲线的定义可得2a=|PF'|-|PF|=
-
=7-5=2,即a=1,
即有e=
=2.
故选C.
设P(m,n),
由抛物线的定义可得|PF|=m+2=5,
解得m=3,
则n2=24,即有P(3,±2
| 6 |
可得左焦点F'为(-2,0),
由双曲线的定义可得2a=|PF'|-|PF|=
| 25+24 |
| 1+24 |
=7-5=2,即a=1,
即有e=
| c |
| a |
故选C.
点评:本题主要考查了双曲线,抛物线的定义和简单性质,主要考查了离心率的求法,解答关键是利用抛物线和双曲线的定义.
练习册系列答案
相关题目
在△ABC中,AB=4,AC=3,∠A=60°,点H是△ABC的垂心,设存在实数λ,μ,使
=λ
+μ
,则( )
| AH |
| AB |
| AC |
A、λ=
| ||||
B、λ=
| ||||
C、λ=
| ||||
D、λ=
|
用数学归纳法证明:1+
+
+…+
<k+1(n∈N*),由n=k(k∈N*)不等式成立,推证n=k+1时,左边应增加的项数是( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| A、2k |
| B、2k-1 |
| C、2k+1 |
| D、2k-1 |