题目内容

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点是抛物线y2=8x焦点F,两曲线的一个公共点为P,且|PF|=5,则此双曲线的离心率为(  )
A、
5
2
B、
5
C、2
D、
2
3
3
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线和双曲线有相同的焦点求得c=2,根据抛物线的定义可以求出P的坐标,运用双曲线的定义求得2a=2,然后求得离心率e.
解答: 解:抛物线y2=8x焦点F(2,0),准线方程为x=-2,
设P(m,n),
由抛物线的定义可得|PF|=m+2=5,
解得m=3,
则n2=24,即有P(3,±2
6
),
可得左焦点F'为(-2,0),
由双曲线的定义可得2a=|PF'|-|PF|=
25+24
-
1+24

=7-5=2,即a=1,
即有e=
c
a
=2.
故选C.
点评:本题主要考查了双曲线,抛物线的定义和简单性质,主要考查了离心率的求法,解答关键是利用抛物线和双曲线的定义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网