题目内容

设a是实数,f(x)=a-
2
2x+1
(x∈R)

(1)当f(x)为奇函数时,求a的值;
(2)证明:对于任意a,f(x)在R上为增函数.
(1)∵f(x)为奇函数
∴f(0)=0,解得a=1;
(2)证明:设x1,x2∈R,x1<x2
则f(x1)-f(x2
=(a-
2
2x1+1
)-(a-
2
2x2+1
)

=
2
2x2+1
-
2
2x1+1

=
2(2x1-2x2)
(2x1+1)(2x2+1)

由于指数函数y=2x在R上是增函数,
且x1<x2,所以2x12x22x1-2x2<0
又由2x>0,得2x1+1>02x2+1>0
∴f(x1)-f(x2)<0即f(x1)<f(x2),
所以,对于任意a,f(x)在R上为增函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网