题目内容
设L为曲线C:y=在点(1,0)处的切线.(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方.
(1)y=x-1(2)见解析
解析
已知函数,.(1)求的单调区间;(2)当时,若对于任意的,都有成立,求的取值范围.
已知函数f(x)=ln x-ax+1在x=2处的切线斜率为-.(1)求实数a的值及函数f(x)的单调区间;(2)设g(x)=,对?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正实数k的取值范围;(3)证明: ++…+<(n∈N*,n≥2).
已知函数f(x)=x3-3ax2+3x+1.(1)设a=2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.
(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.
已知函数.(1)若函数在上是增函数,求实数的取值范围;(2)若函数在上的最小值为3,求实数的值.
已知函数(1)若函数的图象切x轴于点(2,0),求a、b的值;(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
已知函数,其中且m为常数.(1)试判断当时函数在区间上的单调性,并证明; (2)设函数在处取得极值,求的值,并讨论函数的单调性.
已知函数在区间,上有极大值.(1)求实常数m的值.(2)求函数在区间,上的极小值.