题目内容

13.函数f(x)是定义在[-1,1]上的增函数,若f(x-1)<f(x2-1),则x范围是(  )
A.(1,+∞)∪(-∞,0)B.(0,1)C.$({1,\sqrt{2}}]$D.$({1,\sqrt{2}}]∪[{-\sqrt{2},0})$

分析 利用函数的定义域和单调性,可得 $\left\{\begin{array}{l}{-1≤x-1≤1}\\{-1{≤x}^{2}-1≤1}\\{x-1{<x}^{2}-1}\end{array}\right.$,由此求得x的范围.

解答 解:∵函数f(x)是定义在[-1,1]上的增函数,若f(x-1)<f(x2-1),
∴$\left\{\begin{array}{l}{-1≤x-1≤1}\\{-1{≤x}^{2}-1≤1}\\{x-1{<x}^{2}-1}\end{array}\right.$,求得1<x≤$\sqrt{2}$,
故选:C.

点评 本题主要考查函数的定义域和单调性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网